

On the reaction of anthranilic acid with thionyl chloride : Iminoketene intermediate formation

Dominic E Jacob* & Lopez Mathew ‡

*Department of Chemistry, Research Centre, Nirmala College, Muvattupuzha 686 661, Kerala, India

‡Department of Chemistry, Union Christian College, Aluva 683 102, Kerala, India

E-mail: ejdominic@rediffmail.com

Received 3 February 2006; accepted (revised) 1 December 2006

2-(Sulfinylamino) benzoyl chloride is formed on treating anthranilic acid with thionyl chloride. The formation of iminoketene intermediate from 2-(sulfinylamino) benzoyl chloride is established and the reactions carried out using the intermediate are described.

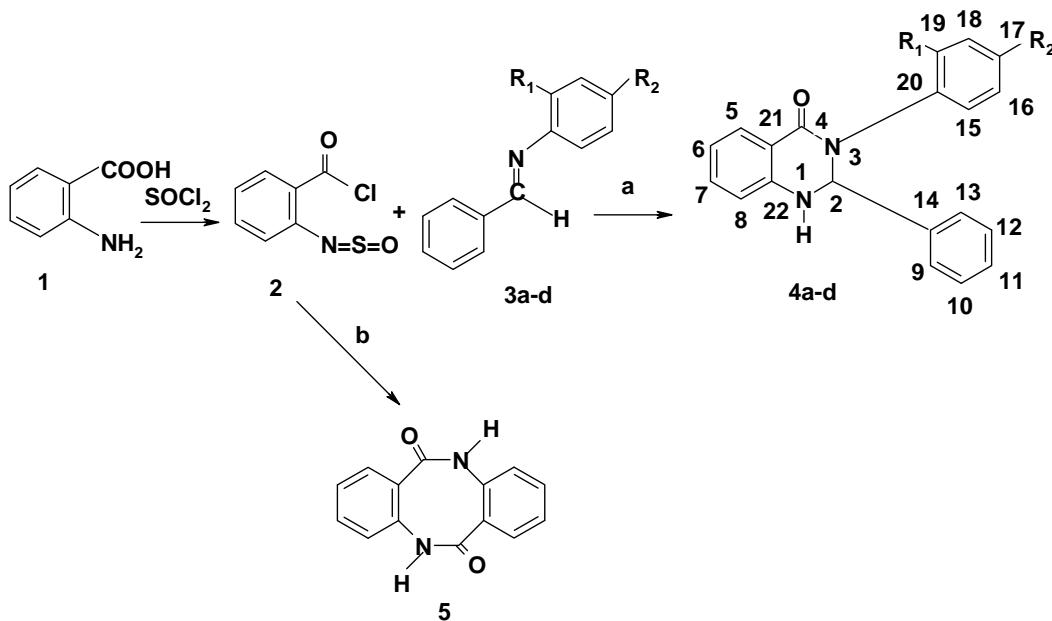
Keywords: Iminoketene intermediate, anthranilic acid, thionyl chloride, schiff bases, dihydroquinazolin-4 (1*H*)-ones, dibenzo [*b,f*] [1,5] diazocene-6,12-(5*H,11H*)-dione, 2-(sulfinylamino) benzoyl chloride, alkyl anthranilates

IPC: Int.Cl.⁸ C07D

It has been reported that sulfinamide anhydride¹ is formed when anthranilic acid is treated with thionyl chloride under anhydrous conditions. Garin *et al.*² reported that no sulfinamide anhydride was formed in the reaction of anthranilic acid with thionyl chloride. They reported that 2-(sulfinylamino) benzoyl chloride was formed, in accordance with an earlier observation³, under the same reaction conditions. Our interest in the addition reactions of 2-(sulfinylamino) benzoyl chloride and the physiological activities⁴ of its products prompted us to re-examine the reaction between anthranilic acid and thionyl chloride.

The present paper not only confirms the formation of 2-(sulfinylamino) benzoyl chloride in the reaction of anthranilic acid **1** with thionyl chloride but also suggests the formation of iminoketene **7** under the reaction conditions.

2-(Sulfinylamino) benzoyl chloride **2** on treatment with azomethines **3a-d** in dry benzene solution afforded dihydroquinazolin-4 (1*H*)-ones **4a-d** in good yield along with a small amount of dibenzo [*b,f*] [1,5] diazocene-6,12-(5*H,11H*)-dione **5** (**Scheme I, Table I**). Dibenzo [*b,f*] [1,5] diazocene-6,12-(5*H,11H*)-dione **5** was also isolated, on keeping **2** for 24 hr⁵.

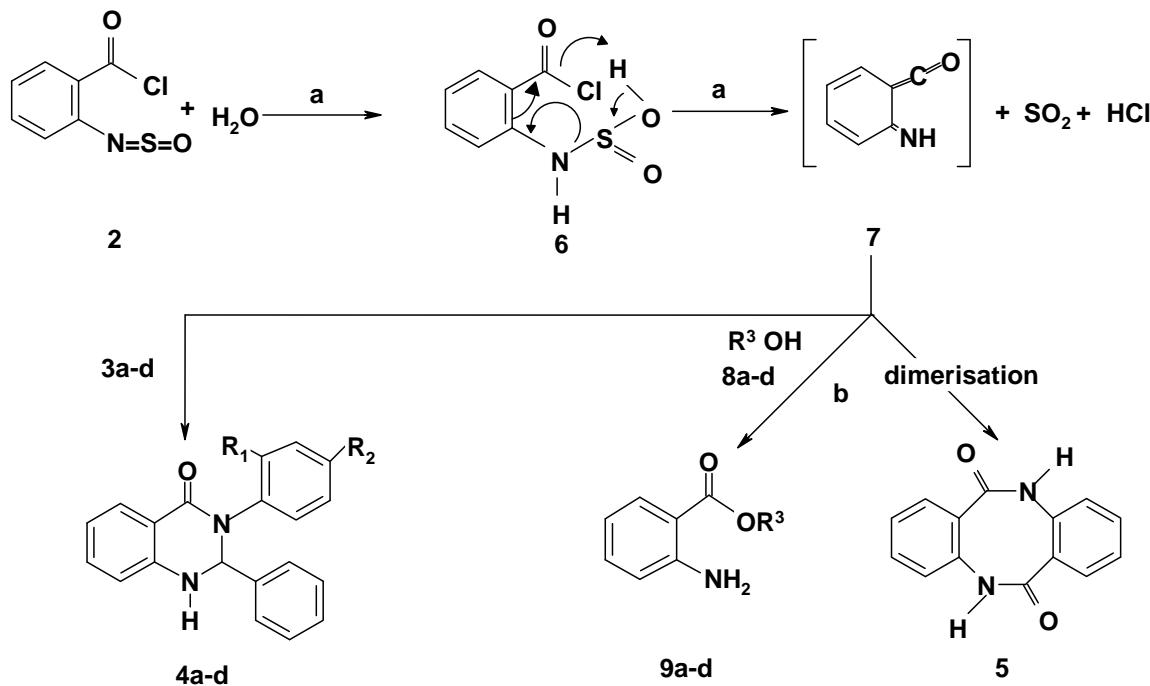

The formation of **4a-d** and **5** was envisaged through the formation of an iminoketene intermediate.

The course of the reaction was monitored by GCMS and IR spectrometers. The reaction of

anthranilic acid and thionyl chloride was carried out under dry nitrogen and the reaction product was distilled under reduced pressure to remove excess thionyl chloride and HCl. An immediate GCMS analysis under dry conditions of the reaction mixture indicated the presence of 2-(sulfinylamino) benzoyl chloride (*m/z* = 201). No peak was observed at *m/z* = 183, indicating the absence of sulfinamide anhydride as proposed by Kametani *et al.*¹. Besides the absence of peak at *m/z* = 119 also indicated the absence of formation of iminoketene under the dry conditions. However when the reaction mixture was exposed to atmosphere for 35 minutes, peak at *m/z* 119 (45%) and also at *m/z* 64 (100%), 36 (25%) and 38 (8.2%) were developed plausibly due to the formation of iminoketene, sulphur dioxide, HCl³⁵ and HCl³⁷ respectively.

The IR spectrum of the reaction mixture after 35 minutes developed a ν_{\max} 2130 cm^{-1} indicating a ketene functionality. Besides, we observed the formation of alkyl anthranilates **9b-d** and anthranilic acid **9a** in nearly quantitative yields, when the reaction mixture was treated with alcohols and water respectively (**Scheme II, Table II**).

On the basis of these observations the following plausible mechanism for the various reactions (**Scheme II**) is suggested.


(a) Dry benzene, 2 hr for **4a** and **4b** and 24 hr for **4c** and **4d**, room temp (b) Dry benzene, 24 hr, room temp

Substrate/Product	R ₁	R ₂
3a/4a	H	H
3b/4b	H	Cl
3c/4c	H	CH ₃
3d/4d	OCH ₃	H

Scheme I

Table I — Characterization data of compounds **4a-d**

Compd	m.p. °C	Yield (%)	¹ H NMR (δ, ppm)	¹³ C NMR (δ, ppm)	MS m/z (%)
4a	210	90	7.99 (d, 1H, <i>J</i> =8.2 Hz), 7.97 (t, 1H, <i>J</i> =7.1 Hz), 7.33 (d, 1H, <i>J</i> =8.3 Hz), 7.30-7.21 (m, 5H), 7.14-7.01 (m, 5H), 6.86 (t, 1H, <i>J</i> =7.0 Hz), 6.07 (s, 1H), 4.73 (s, broad, 1H, D ₂ O exchangeable)	163.0 (C4), 146.5 (C20), 136.2 (C22), 134.3 (C21), 132.8 (C14), 129.4 (C8), 129.2 (C5), 129.0 (C7), 128.9 (C6), 128.7 (C16, C18), 126.8 (C17), 126.2 (C15, C19), 119.4 (C10, C12), 116.9 (C9, C13), 116.7 (C11), 54.3 (C2)	300 (M ⁺ , 18), 223 (50), 209 (15), 208 (100), 77 (20).
4b	221	90	7.99 (d, 1H, <i>J</i> =8.2 Hz), 7.97 (t, 1H, <i>J</i> =7.1 Hz), 7.33 (d, 1H, <i>J</i> =8.3 Hz), 7.25 (d, 2H, <i>J</i> =8.0 Hz), 7.23 (d, 2H, <i>J</i> =8.0 Hz), 7.14-7.01 (m, 5H), 6.87 (t, 1H, <i>J</i> =7.0 Hz), 6.06 (s, 1H), 4.59 (s, broad, 1H, D ₂ O exchangeable).	164.5 (C4), 133.9 (C20), 130.3 (C22), 129.1 (C21), 129.0 (C14), 128.9 (C17), 128.7 (C8), 128.3 (C5), 128.1 (C7), 127.2 (C6), 126.7 (C16, C18), 119.7 (C15, C19), 114.7 (C10, C12), 113.6 (C9, C13), 113.5 (C11), 54.3 (C2)	334 (M ⁺ , 12), 336 (4), 257 (34), 209 (48), 208 (100), 77 (12).
4c	188	89.8	8.00 (d, 1H, <i>J</i> =8.2 Hz), 7.97 (t, 1H, <i>J</i> =7.1 Hz), 7.33 (d, 1H, <i>J</i> =8.3 Hz), 7.27 (d, 2H, <i>J</i> =8.0 Hz), 7.14-7.01 (m, 5H), 6.86 (t, 1H, <i>J</i> =7.0 Hz), 6.61 (d, 2H, <i>J</i> =9.0 Hz), 6.04 (s, 1H), 4.63 (s, broad, 1H, D ₂ O exchangeable), 2.26 (s, 3H, CH ₃).	163.0 (C4), 145.3 (C20), 140.1 (C22), 138.0 (C21), 136.4 (C14), 133.7 (C17), 129.5 (C8), 129.1 (C5), 128.9 (C7), 128.7 (C6), 126.9 (C16, C18), 126.8 (C15, C19), 119.5 (C10, C12), 116.9 (C9, C13), 114.7 (C11), 54.3 (C2), 21.1 (Me at C17)	314 (M ⁺ , 15), 237 (30), 209 (15), 208 (100), 77 (20).
4d	190	70	8.03 (d, 1H, <i>J</i> =8.2 Hz), 8.00 (t, 1H, <i>J</i> =7.2 Hz), 7.93 (d, 1H, <i>J</i> =8.00 Hz), 7.90 (d, 1H, <i>J</i> =8.3 Hz), 7.36 (t, 1H, <i>J</i> =7.20 Hz), 7.30 (t, 1H, <i>J</i> =7.2 Hz), 7.25-7.15 (m, 5H), 7.05 (t, 1H, <i>J</i> =7.00 Hz), 6.78 (d, 1H, <i>J</i> =8.00 Hz), 6.19 (s, 1H), 3.77 (s, 3H, CH ₃), 4.58 (s, broad, 1H, D ₂ O exchangeable).	164.5 (C4), 146.5 (C20), 140.5 (C19), 134.4 (C22), 132.5 (C21), 129.7 (C14), 129.4 (C8), 129.2 (C5), 129.0 (C7), 128.2 (C6), 127.8 (C15), 123.6 (C17), 121.2 (C16), 120.5 (C18), 117.4 (C10, C12), 116.7 (C9, C13), 114.5 (C11), 57 (Me of MeO at C19), 55.7 (C2)	330 (M ⁺ , 30), 253 (33.8), 209 (12.5), 208 (100), 77 (15).

(a) 2-(sulfinylamino) benzoyl chloride kept open in contact with atmosphere. (b) In the presence of water and alcohols

Substrate / Product	R^3
8a / 9a	H
8b / 9b	CH ₃
8c / 9c	<i>n</i> -butyl
8d / 9d	<i>isopropyl</i>

Scheme II

Table II—Characterization data of compounds **9b-d**

Compd	m.p. °C	Yield (%)	¹ H NMR (δ , ppm)	MS <i>m/z</i> (%)
9b	Liquid	99.5	7.79 (d, 1H, J =7.9 Hz), 7.15 (t, 1H, J =8.0 Hz), 6.82 (t, 1H, J =7.9 Hz), 6.55 (d, 1H, J =7.9 Hz), 5.43 (s, 2H, broad, exchangeable with D ₂ O), 3.74 (s, 3H).	151 (M ⁺ 10.43), 120 (6), 119 (100), 92 (84.36).
9c	Liqu#id	99.4	8.27 (d, 1H, J =6.8 Hz), 7.77 (d, 1H, J =6.8 Hz), 7.47 (t, 1H, J =7.2 Hz), 7.44 (t, 1H, J =7.5 Hz), 5.29 (s, 2H, broad, exchangeable with D ₂ O), 4.31 (t, 2H, J =6.5 Hz), 1.6 -1.4 (m, 2H), 1.3-1.1 (m, 2H), 1.00 (t, 3H, J =6.2 Hz).	193 (M ⁺ 100), 137 (1.5), 120 (11), 119(24), 92 (42.59).
9d	liquEid	99.3	8.24 (d, 1H, J =6.7 Hz), 7.77 (d, 1H, J =6.7 Hz), 7.54 (t, 1H, J =7.0 Hz), 7.46 (t, 1H, J =6.9 Hz), 5.30 (s, 2H), 4.15 - 3.90 (m, 1H), 1.1 (d, 6H, J =6.9 Hz).	179 (M ⁺ 42), 137 (17), 120 (66), 119 (33), 92 (100).

Experimental Section

NMR spectra were recorded in Bruker 300 MHz FT-NMR spectrometer using samples dissolved in CDCl₃ and chemical shifts are reported in δ (ppm) relative to Me₄Si (¹H NMR) or CDCl₃ (¹³C NMR) as internal standards. IR spectra, were recorded in Bomem MB Series FT-IR spectrophotometer. IR spectra of alkyl anthranilates and changes occurring to 2-

(sulfinylamino) benzoyl chloride were monitored using Thermo Nicolet Avtar 370 DTGS FT-IR spectrophotometer. Electron impact mass spectra were obtained using Varian 1200L MS spectrometer. CHN analyses were recorded on an Elementar Vario EL III CHN analyzer. Melting points were recorded on Mel-temp II Laboratory Devices, USA and are uncorrected. All reactions were monitored by thin layer chromatography

(TLC); visualization was effected with a UV lamp. Azomethines were prepared according to literature procedure, purified by column chromatography and recrystallised from methanol before application. The solvents and other chemicals used for the reactions were purified and/or dried as per the standard literature methods. Thionyl chloride was purchased from Qualigens FINE CHEMICALS and used as such.

General procedure for the preparation of dihydroquinazolin-4(1*H*)-ones. To 2-(sulfinylamino) benzoyl chloride **2** (2.73 mmole) were added different Schiff bases **3a-d** (2.73 mmole) in dry benzene (20 mL) and kept for 2 hr in the case of **3a** and **3b** and 24 hr in the case of **3c** and **3d**. Excess solvent was distilled off in vacuum and the residue was dissolved in CHCl_3 (20 mL). The organic layer was washed successively with 10% NaHCO_3 (5×10 mL), water (7×10 mL) and finally dried over anhydrous MgSO_4 . The residue obtained was chromatographed over silica gel using CH_2Cl_2 as eluant in the case of **4a** and **4b**, CH_2Cl_2 - CH_3OH (9 : 1) in the case of **4c** and CHCl_3 - $\text{CH}_3\text{COOC}_2\text{H}_5$ (85 : 15) in the case of **4d**.

2,3-Diphenyl-2,3-dihydroquinazolin-4(1*H*)-one

4a. It was obtained as cream coloured crystalline platelets (90%). IR (KBr, cm^{-1}): 3299 (NH stretch), 1640 (C=O stretch); Anal. Calcd for $\text{C}_{20}\text{H}_{16}\text{N}_2\text{O}$: C, 80.00; H, 5.33; N, 9.33; O, 5.33. Found: C, 80.02; H, 5.32; N, 9.35; O, 5.31%.

3-(4-Chlorophenyl)-2-phenyl-2,3-dihydroquinazolin-4(1*H*)-one 4b. It was obtained as a cream coloured solid (90%). IR(KBr, cm^{-1}): 3305.51 (NH stretch), 1638.79 (C=O stretch); Anal. Calcd for $\text{C}_{20}\text{H}_{15}\text{ClN}_2\text{O}$: C, 71.85; H, 4.49; Cl, 10.48; N, 8.38; O, 4.79. Found: C, 71.87; H, 4.48; Cl, 10.48; N, 8.39; O, 4.78%.

3-(4-Methylphenyl)-2-phenyl-2,3-dihydroquinazolin-4(1*H*)-one 4c. It was obtained as a pale yellow solid (89.80%). IR(KBr, cm^{-1}): 3305.75 (NH stretch), 1638.79 (C=O stretch); Anal. Calcd for $\text{C}_{21}\text{H}_{18}\text{N}_2\text{O}$: C, 80.25; H, 5.73; N, 8.92; O, 5.10. Found: C, 80.27; H, 5.74; N, 8.90; O, 5.09%.

3-(2-Methoxyphenyl)-2-phenyl-2,3-dihydroquinazolin-4(1*H*)-one 4d. It was obtained as a lemon yellow solid (70.0%). IR (KBr, cm^{-1}): 3293 (NHstretch), 1635 (C=Ostretch); Anal. Calcd for $\text{C}_{21}\text{H}_{18}\text{N}_2\text{O}_2$: C, 76.37; H, 5.45; N, 8.48; O, 9.7. Found: C, 76.38; H, 5.44; N, 8.50; O, 9.68%.

Small amount of the dimer, dibenzo [*b,f*] [1,5] diazocine-6,12-(5*H,11H*)-dione **5** (detected by TLC) was also obtained when 50% petroleum ether + 50% benzene was used as eluant in all the above cases.

Dibenzo [*b,f*] [1,5] diazocine-6,12-(5*H,11H*)-dione 5. 2-(Sulfinylamino) benzoyl chloride **2** (3.31 mmole) in dry benzene (20 mL) was kept overnight. Excess solvent was distilled off in vacuum and the residue was dissolved in CHCl_3 (20 mL), which was washed with 10% NaHCO_3 (3×10 mL), water (3×10 mL), dried over anhydrous MgSO_4 and chromatographed over silica gel using petroleum ether - benzene (1: 1) as eluant to afford pure dibenzo [*b,f*] [1,5] diazocine-6,12-(5*H,11H*)-dione **5**, as a lemon yellow solid (350 mg, 88.55%), m.p. 166°C.

Alkyl anthranilates 9b-d. A mixture of 2-(sulfinylamino) benzoyl chloride **2** (441.24 mg, 2.19 mmole) and respective aliphatic alcohols (2.19 mmole), was shaken well for 1 hr. The mixture was chromatographed over basic alumina (70-230 mesh). Pure alkyl anthranilate was eluted out with petroleum ether and removal of solvent gave pure liquid samples of methyl, *n*-butyl and *isopropyl* anthranilates respectively.

9b. IR (KBr, cm^{-1}) 3480.95, 3370.79 (NH₂), 1689.56 (C=O); Anal. Calcd. For $\text{C}_8\text{H}_9\text{NO}_2$: C, 63.58; H, 5.96; N, 9.25; O, 21.21. Found C, 63.57; H, 5.97; N, 9.24; O, 21.22%.

9c. IR (KBr, cm^{-1}) 3068.75, 3041.74 (NH₂), 1685.79 (C=O); Anal. Calcd. For $\text{C}_{11}\text{H}_{15}\text{NO}_2$: C, 68.39; H, 7.77; N, 7.25; O, 16.59. Found: C, 68.40; H, 7.76; N, 7.26; O, 16.58%.

9d. IR (KBr, cm^{-1}) 3068.5, 3041.74 (NH₂), 1687.71 (C=O); Anal. Calcd. For $\text{C}_{10}\text{H}_{13}\text{NO}_2$: C, 67.04; H, 7.26; N, 7.82; O, 17.88. Found: C, 67.05; H, 7.25; N, 7.81; O, 17.89%.

Acknowledgement

The authors are thankful to The Director, Indian Institute of Chemical Technology, Hyderabad for providing mass spectral facilities. The authors are also thankful to Ms. Ceenamma Jacob, Head, Chemistry, Nirmala College Muvattupuzha, Dr. Varghese John, Principal, Ms. Roshni Mathew Maliakkal, Head, Chemistry, Mr. Cherian K George, Librarian, Union Christian College, Aluva for providing laboratory and library facilities and to the University Grants Commission, New Delhi for financial support.

References

- (a) Kametani T, Higa T, Loc C V, Ihara M, Koizumi M & Fukumoto K, *J Am Chem Soc*, 98, **1976**, 6186.
- (b) Kametani T & Fukumoto K, *Acc Chem Res*, 9, **1976**, 319.
- (c) Kametani T, Loc C V, Higa T, Koizumi M, Ihara M & Fukumoto K, *J Am Chem Soc*, 99, **1977**, 2306.

(d) Kametani T, Ohsawa T, Ihara M & Fukumoto K, *Chem Pharm Bull*, 26, **1978**, 1922.

(e) Kametani T, Loc C V, Higa T, Ihara M & Fukumoto K, *J Chem Soc Perkin Trans I*, **1977**, 2347.

2 Garín J, Merino P, Orduna J, Tejero T & Uriel S, *Tetrahedron Lett*, 32, **1991**, 3263.

3 (a) Graf R & Langer W, *J Prakt Chem*, 148, **1937**, 161.
(b) Iwakura Y, Uno K & Kang S, *J Org Chem*, 31, **1966**, 142.
(c) Vigne C, Buti M, Montignoul C, Torreilles E & Giral L, *J Heterocycl Chem*, 13, **1976**, 921.
(d) Montignoul C, Richard M, Vigne C & Giral L, *J Heterocycl Chem*, 21, **1984**, 1509.
(e) Bergman J & Bergman S, *J Org Chem*, 50, **1985**, 1246.
(f) Fodor L, Szabó J, Bernath G & Sohár P, *Tetrahedron Lett*, 25, **1984**, 2013.
(g) Jakobsen M H, Buchardt O, Holm A & Meldal M, *Synthesis*, **1990**, 1008.
(h) Vigne C, Buti M, Montignoul C, Torreilles E & Giral L, *J Heterocycl Chem*, 13, **1976**, 921.

4 (a) Koizumi M, *Japan Kokai* 77, 07, 978, **1977**, *Chem Abstr*, 87, **1977**, 483.

(b) Cohen E, Klarberg B & Vaughan J R, *J Am Chem Soc*, 81, **1959**, 5508.

(c) American Cyanamid Co. US Pat. 3, 201, 398. **1965**, *Chem Abstr*, 63, **1965**, 18114c.

(d) Parke Davis and Co. US Pat. 3, 186, 992. **1965**, *Chem Abstr*, 63, **1965**, 13282b.

(e) Boehringer C H S, French Pat. M 2588. **1964**, *Chem Abstr*, 61, **1964**, 16075h.

(f) Rexall Drug Co. US Pat. 3, 257, 397. **1966**, *Chem Abstr*, 65, **1966**, 8933b.

(g) Sinha S K P, Banerjee P K & Chaudhury D N, *J Indian Chem Soc*, 47, **1970**, 1089.

(h) Padmaja J, Satyanarayana M & Ratnam C V, *Indian J Chem*, 24B, **1985**, 803.

(i) Rajender K P, Reddy M & Satyanarayana M, *Synth Commun*, 22, **1992**, 2499.

(j) Bonola G, Da Re P, Magistretti M J, Massarani E & Setnikar I, *J Med Chem*, 11, **1968**, 1136.

(k) Kentaro O, Yoshihisa Y, Toyonari O, Junichi T, Takashi O & Ichizo I, *J Med Chem*, 15, **1972**, 518.

5 Dominic E J & Lopez M, *Curr Sci*, 86, **2004**, 1368.